Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Dalton Trans ; 52(37): 13190-13198, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665007

RESUMO

This study describes how the optimization of Cu2O/CuO heterostructures can enhance their (photo)catalytic performance. More specifically, the evaluation of catalysts with different Cu2O/CuO molar ratios was used to optimize their performance for the hydrogenation of 4-nitrophenol under both blue-LED light and dark conditions. For the first time, we analyzed the effect of blue LED irradiation on this reaction and found that when blue LEDs are used as the light source, a Cu2O/CuO ratio of 0.15 results in rate constants 7 to 3 times higher than those of catalysts with either lower (0.01) or higher (0.42) ratios. Furthermore, this photocatalyst shows good stability, >70% after 5 cycles, and excellent chemoselectivity in the selective reduction of the nitro group in the presence of other functionalities, i.e. -COOH, -CONH2 and -OH.

2.
Nat Commun ; 14(1): 1256, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878918

RESUMO

Zeolite interconversion is a widely used strategy due to its unique advantages in the synthesis of some zeolites. By using a long-chain quaternary amine as both a structure-directing agent and porogen, we have produced superior catalysts, which we named Hybrid Zeolites, as their structures are made of building units of different zeolite types. The properties of these materials can be conveniently tuned, and their catalytic performance can be optimized simply by stopping the interconversion at different times. For cracking the 1,3,5-triisopropylbenzene, Hybrid Zeolites made of FAU and MFI units show a 5-fold increase in selectivity towards the desired product, that is, 1,3-diisopropylbenzene, compared to the commercial FAU, and a 7-fold increase in conversion at constant selectivity compared to MFI zeolite.

3.
Mater Horiz ; 10(5): 1625-1640, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36861895

RESUMO

Polystyrene (PS) is one of the most popular plastics due to its versatility, which renders it useful for a large variety of applications, including laboratory equipment, insulation and food packaging. However, its recycling is still a challenge, as both mechanical and chemical (thermal) recycling strategies are often cost-prohibitive in comparison to current disposal methods. Therefore, catalytic depolymerization of PS represents the best alternative to overcome these economical drawbacks, since the presence of a catalyst can improve product selectivity for chemical recycling and upcycling of PS. This minireview focuses on the catalytic processes for the production of styrene and other valuable aromatics from PS waste, and it aims to lay the ground for PS recyclability and long-term sustainable PS production.

4.
Angew Chem Int Ed Engl ; 61(41): e202210434, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947114

RESUMO

We report a method to prepare core-shell zeolite beta (*BEA) with an aluminous core and an epitaxial Si-rich shell. This method capitalizes on the inherent defects in *BEA crystals to simultaneously passivate acid sites on external surfaces and increase intracrystalline mesoporosity through facile post-hydrothermal synthesis modification in alkaline media. This process creates more hydrophobic materials by reducing silanol defects and enriching the shell in silica via a combination of dealumination and the relocation of silica from the core to the shell during intracrystalline mesopore formation. The catalytic consequences of *BEA core-shells relative to conventional analogues were tested using the biomass conversion of levulinic acid and n-butanol to n-butyl levulinate as a benchmark reaction. Our findings reveal that siliceous shells and intracrystalline mesopores synergistically enhance the performance of *BEA catalysts.

6.
J Am Chem Soc ; 144(11): 5163-5171, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266382

RESUMO

Interzeolite transformation has been used to produce a novel family of hierarchical catalysts featuring excellent textural properties, strong acidity, and superior catalytic performance for the Friedel-Crafts alkylation of indole with benzhydrol, the Claisen-Schmidt condensation of benzaldehyde and hydroxyacetophenone, and the cracking of polystyrene. Intermediate solids of the FAU interzeolite transformation into BEA display both increased accessibility─due to the development of mesoporosity─and strong acidity─caused by the presence of ultrasmall crystals or zeolitic fragments in their structure. The use of surfactants allows for the development of the hierarchical catalysts with very narrow pore size distribution. The properties of interzeolite transformation intermediates (ITIs) can be fine-tuned simply by stopping the interconversion at different times.

7.
Angew Chem Int Ed Engl ; 61(16): e202117742, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138688

RESUMO

Tailoring processes of nucleation and growth to achieve desired material properties is a pervasive challenge in synthetic crystallization. In systems where crystals form via nonclassical pathways, engineering materials often requires the controlled assembly and structural evolution of colloidal precursors. In this study, we examine zeolite SSZ-13 crystallization and show that several polyquaternary amines function as efficient accelerants of nucleation, and, in selected cases, tune crystal size by orders of magnitude. Among the additives tested, polydiallyldimethylammonium (PDDA) was found to have the most pronounced impact on the kinetics of SSZ-13 formation, leading to a 4-fold reduction in crystallization time. Our findings also reveal that enhanced nucleation occurs at an optimal PDDA concentration where a combination of light-scattering techniques demonstrate these conditions lead to polymer-induced aggregation of amorphous precursors and the promotion of (alumino)silicate precipitation from the growth solution. Here, we show that relatively low concentrations of polymer additives can be used in unique ways to dramatically enhance SSZ-13 crystallization rates, thereby improving the overall efficiency of zeolite synthesis.

8.
ACS Mater Lett ; 4(1): 49-54, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35005627

RESUMO

Micelle formation inside faujasite (FAU) zeolite, a critical step in the introduction of mesoporosity in zeolites by surfactant templating, has been confirmed by both 13C NMR and Raman spectroscopy. Here we provide unambiguous evidence of the incorporation of surfactant molecules inside zeolites during the first step of the surfactant-templating process followed by their self-assembly into micelles after hydrothermal treatment. The homogeneous presence of these micelles throughout zeolite crystals has been directly observed by Raman microspectroscopy, confirming the uniform incorporation of mesoporosity in zeolites by surfactant templating.

9.
Adv Mater ; 33(22): e2100897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33904205

RESUMO

Conventional methods to prepare hierarchical zeolites depend upon the use of organic structure-directing agents and often require multiple synthesis steps with limited product yield and Brønsted acid concentration. Here, it is shown that the use of MEL- or MFI-type zeolites as crystalline seeds induces the spontaneous formation of self-pillared pentasil zeolites, thus avoiding the use of any organic or branching template for the crystallization of these hierarchical structures. The mechanism of formation is evaluated by time-resolved electron microscopy to provide evidence for the heterogeneous nucleation and growth of sequentially branched nanosheets from amorphous precursors. The resulting hierarchical zeolites have large external surface area and high percentages of external acid sites, which markedly improves their catalytic performance in the Friedel-Crafts alkylation and methanol to hydrocarbons reactions. These findings highlight a facile, commercially viable synthesis method to reduce mass-transport limitations and improve the performance of zeolite catalysts.

10.
Chem Commun (Camb) ; 55(85): 12869-12872, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31599274

RESUMO

A hierarchical USY zeolite has been produced using the surfactant-templating method and used as a catalyst for the production of two important active pharmaceutical ingredients. The presence of intracrystalline mesoporosity in the zeolite results in a significant increase in both the activity (up to 30 fold increase in TOF) and reusability for Friedel-Crafts alkylation and aldol condensation steps.


Assuntos
Nanoestruturas/química , Preparações Farmacêuticas/química , Tensoativos/química , Zeolitas/química , Catálise
11.
Chemistry ; 25(43): 10045-10048, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236993

RESUMO

With the aim of understanding the thermochemistry of the introduction of mesoporosity in zeolites by using surfactants, high temperature oxide melt solution calorimetry was used to determine the change in the enthalpy of formation of USY zeolite before and after the introduction of mesoporosity. Our results confirm that this process only slightly destabilizes the zeolite by the additional surface area. However, this can be overcome by the stabilizing effect of the interactions between the surfactant and the zeolite framework.

12.
Angew Chem Int Ed Engl ; 57(35): 11283-11288, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29920889

RESUMO

The preparation of nanosized zeolites is critical for applications where mass-transport limitations within microporous networks hinder their performance. Often the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Herein, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors leads to the formation of a metastable nonporous phase, which undergoes an intercrystalline transformation to zeolite L. The generation of highly interdispersed alkali-silicate precursors is seemingly critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystal.

13.
Angew Chem Int Ed Engl ; 57(28): 8724-8728, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29719104

RESUMO

Mesoporosity can be conveniently introduced into zeolites by treating them in basic surfactant solutions. The apparent activation energy involved in the formation of mesopores in USY by surfactant-templating was determined using a combination of in situ synchrotron X-ray diffraction and ex situ gas adsorption. Additionally, techniques such as pH measurement and thermogravimetry/differential thermal analysis were employed to determine OH- evolution and cetyltrimethylammonium ion (CTA+ ) uptake during the development of mesoporosity, thereby providing information about the different steps involved. The combination of both in situ and ex situ techniques has allowed determination of the apparent activation energies of the different processes involved in the mesostructuring of USY zeolites for the first time. Apparent activation energies are of the same order of magnitude (30-65 kJ mol-1 ) as those involved in the crystallization of zeolites. Hence, important mechanistic insight into the surfactant-templating method was obtained.

14.
Chempluschem ; 83(5): 390-400, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31957357

RESUMO

A series of low-temperature, visible-light-activated black organotitanias were synthesised through a sol-gel strategy that allowed the in situ incorporation of p-phenylenediamine (PPD) into the framework of anatase nanoparticles. The effect of the synthetic conditions on the crystalline structure and photocatalytic activity of these materials was assessed by several characterisation techniques, which revealed a small crystalline domain size (4.6-5.5 nm), effective incorporation of PPD inside the nanoparticles, and a significant reduction in the band gap of these materials (from 3.2 to 2.7-2.9 eV). A systematic study of the synthetic parameters also allowed a significant reduction of the solvent used for the preparation of these black organotitanias (20-fold), as well as the crystallisation time, without compromising the structural properties and photocatalytic activity of these materials. The organotitanias with the highest PPD content and high crystallinity result in the best performing materials in the photocatalytic degradation of rhodamine 6G under both UV- and visible-light irradiation.

15.
Chem Soc Rev ; 43(22): 7681-717, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24699503

RESUMO

Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

16.
Dalton Trans ; 42(5): 1378-84, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23051700

RESUMO

Well-dispersed Pd nanoparticles have been synthesized inside the mesoporosity of a silica monolith featuring hierarchical porosity of homogeneous interconnected macropores (4 microns) and mesopores (11 nm). These monoliths have been implemented as microreactors for selective hydrogenation reactions. Conversion and selectivity can be tuned by adjusting the flow rates of hydrogen and substrates. In the selective hydrogenation of cyclooctadiene, a conversion of 95% and a selectivity of 90% in the monohydrogenated product, constant over a period of 70 h, have been reached. These figures correspond to a productivity of 4.2 mmol s(-1) g(-1)(MonoSil) (or 0.32 mol s(-1) g(-1)(Pd)). In the stereoselective hydrogenation of 3-hexyn-1-ol a constant conversion of 85% was observed, with however moderate selectivity into the cis isomer, over a test period of 7 h. These results open the route to the synthesis of important chemicals and intermediates via safe and green processes.

17.
Chem Commun (Camb) ; 47(32): 9024-35, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21589989

RESUMO

Mesoporous silica, which shows well-defined pore systems, tunable pore diameters (2-30 nm), narrow pore size distributions and high surface areas (>600 m(2) g(-1)), is frequently modified using different methodologies (including in situ and post-synthetic strategies) to introduce various chemical functionalities useful in applications like catalysis, separation, drug delivery, and sensing. This contribution aims to provide a critical overview of the various strategies to incorporate chemical functionalities in mesoporous silica highlighting the advantages of the in situ methods based on the bottom-up construction of mesoporous silica containing various chemical functionalities in its structure.

18.
Medicina (B.Aires) ; 61(6): 849-51, 2001.
Artigo em Espanhol | LILACS | ID: lil-300789

RESUMO

We present the case of a 49 year old man who was admitted with odynophagia, fever and abdominal pain. Later he developed dyspnea and polymialgias. Pericardial effusion was detected on the echocardiogram. Renal failure and rhabdomyolysis developed worsening the clinical picture. A pericardial surgical drainage was decided due to cardiac tamponade. All samples were negative for bacteria and fungi. The presence of enterovirus in pericardial fluid was confirmed.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Enterovirus , Infecções por Enterovirus , Miocardite , Pericardite , Insuficiência Renal , Rabdomiólise , Miocardite , Pericardite
19.
Medicina [B.Aires] ; 61(6): 849-51, 2001.
Artigo em Espanhol | BINACIS | ID: bin-9233

RESUMO

We present the case of a 49 year old man who was admitted with odynophagia, fever and abdominal pain. Later he developed dyspnea and polymialgias. Pericardial effusion was detected on the echocardiogram. Renal failure and rhabdomyolysis developed worsening the clinical picture. A pericardial surgical drainage was decided due to cardiac tamponade. All samples were negative for bacteria and fungi. The presence of enterovirus in pericardial fluid was confirmed. (Au)


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/virologia , Pericardite/virologia , Enterovirus/isolamento & purificação , Infecções por Enterovirus/complicações , Rabdomiólise/virologia , Insuficiência Renal/virologia , Miocardite/complicações , Pericardite/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...